Intermediate states of ribonuclease III in complex with double-stranded RNA.

نویسندگان

  • Jianhua Gan
  • Joseph E Tropea
  • Brian P Austin
  • Donald L Court
  • David S Waugh
  • Xinhua Ji
چکیده

Bacterial ribonuclease III (RNase III) can affect RNA structure and gene expression in either of two ways: as a processing enzyme that cleaves double-stranded (ds) RNA, or as a binding protein that binds but does not cleave dsRNA. We previously proposed a model of the catalytic complex of RNase III with dsRNA based on three crystal structures, including the endonuclease domain of RNase III with and without bound metal ions and a dsRNA binding protein complexed with dsRNA. We also reported a noncatalytic assembly observed in the crystal structure of an RNase III mutant, which binds but does not cleave dsRNA, complexed with dsRNA. We hypothesize that the RNase III*dsRNA complex can exist in two functional forms, a catalytic complex and a noncatalytic assembly, and that in between the two forms there may be intermediate states. Here, we present four crystal structures of RNase III complexed with dsRNA, representing possible intermediates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stepwise model for double-stranded RNA processing by ribonuclease III.

RNA interference is mediated by small interfering RNAs produced by members of the ribonuclease III (RNase III) family represented by bacterial RNase III and eukaryotic Rnt1p, Drosha and Dicer. For mechanistic studies, bacterial RNase III has been a valuable model system for the family. Previously, we have shown that RNase III uses two catalytic sites to create the 2-nucleotide (nt) 3' overhangs...

متن کامل

Noncatalytic assembly of ribonuclease III with double-stranded RNA.

Ribonuclease III (RNase III) represents a family of double-stranded RNA (dsRNA) endonucleases. The simplest bacterial enzyme contains an endonuclease domain (endoND) and a dsRNA binding domain (dsRBD). RNase III can affect RNA structure and gene expression in either of two ways: as a dsRNA-processing enzyme that cleaves dsRNA, or as a dsRNA binding protein that binds but does not cleave dsRNA. ...

متن کامل

Structural Insight into the Mechanism of Double-Stranded RNA Processing by Ribonuclease III

Members of the ribonuclease III (RNase III) family are double-stranded RNA (dsRNA) specific endoribonucleases characterized by a signature motif in their active centers and a two-base 3' overhang in their products. While Dicer, which produces small interfering RNAs, is currently the focus of intense interest, the structurally simpler bacterial RNase III serves as a paradigm for the entire famil...

متن کامل

Structural basis for double-stranded RNA processing by Dicer.

The specialized ribonuclease Dicer initiates RNA interference by cleaving double-stranded RNA (dsRNA) substrates into small fragments about 25 nucleotides in length. In the crystal structure of an intact Dicer enzyme, the PAZ domain, a module that binds the end of dsRNA, is separated from the two catalytic ribonuclease III (RNase III) domains by a flat, positively charged surface. The 65 angstr...

متن کامل

Engineering double-stranded RNA binding activity into the Drosha double-stranded RNA binding domain results in a loss of microRNA processing function

Canonical processing of miRNA begins in the nucleus with the Microprocessor complex, which is minimally composed of the RNase III enzyme Drosha and two copies of its cofactor protein DGCR8. In structural analogy to most RNase III enzymes, Drosha possesses a modular domain with the double-stranded RNA binding domain (dsRBD) fold. Unlike the dsRBDs found in most members of the RNase III family, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 13 10  شماره 

صفحات  -

تاریخ انتشار 2005